Commit c46592cac8c3c0f672971ca6c7ae8f8eb23c5c56
1 parent
9e86b051b4
Exists in
master
Deleted nbi snippet file
Showing
1 changed file
with
0 additions
and
79 deletions
Show diff stats
RepTB_NBI_Algorithm_Snippet.ipynb
1 | { | File was deleted | |
2 | "cells": [ | ||
3 | { | ||
4 | "cell_type": "code", | ||
5 | "execution_count": null, | ||
6 | "metadata": { | ||
7 | "collapsed": true | ||
8 | }, | ||
9 | "outputs": [], | ||
10 | "source": [ | ||
11 | "import numpy as np\n", | ||
12 | "import csv\n", | ||
13 | "import numpy.matlib\n", | ||
14 | "from operator import itemgetter, attrgetter\n", | ||
15 | "from sklearn.model_selection import KFold\n", | ||
16 | "from sklearn.metrics import roc_curve, auc\n", | ||
17 | "import matplotlib.pyplot as plt" | ||
18 | ] | ||
19 | }, | ||
20 | { | ||
21 | "cell_type": "code", | ||
22 | "execution_count": null, | ||
23 | "metadata": { | ||
24 | "collapsed": true | ||
25 | }, | ||
26 | "outputs": [], | ||
27 | "source": [ | ||
28 | "#NBI calculation for A (adjacent matrix)\n", | ||
29 | "\n", | ||
30 | "K = np.diag((1/sum(A))) # Create a diagonal matrix \n", | ||
31 | "n = A.shape[0] # Number of rows of adjacent martix A\n", | ||
32 | "m = A.shape[1] # Number of columns in adjacent matrix A\n", | ||
33 | "#print n, m, Ky.shape\n", | ||
34 | "K[np.isinf(K) | np.isnan(K)] = 0\n", | ||
35 | "kk = np.transpose(np.sum(A,1))\n", | ||
36 | "#print kx.shape\n", | ||
37 | "N = np.matlib.repmat(1/kk,n,1)\n", | ||
38 | "N[np.isinf(N) | np.isnan(N)] = 0\n", | ||
39 | "#kx[np.isinf(kx) | np.isnan(kx)] = 0\n", | ||
40 | "W = np.transpose(np.dot(A, K)) # Create the weight matrix \n", | ||
41 | "W1 = np.dot(A, W)\n", | ||
42 | "W2 = np.multiply(N, W1) # Create the scaled up weight matrix\n", | ||
43 | "print W2.shape\n", | ||
44 | "NBIscore = np.dot(W2, A) # Create the Final Resource matrix in accordance with (R = W.A)\n", | ||
45 | "print NBIscore.shape" | ||
46 | ] | ||
47 | }, | ||
48 | { | ||
49 | "cell_type": "code", | ||
50 | "execution_count": null, | ||
51 | "metadata": { | ||
52 | "collapsed": true | ||
53 | }, | ||
54 | "outputs": [], | ||
55 | "source": [] | ||
56 | } | ||
57 | ], | ||
58 | "metadata": { | ||
59 | "kernelspec": { | ||
60 | "display_name": "Python 2", | ||
61 | "language": "python", | ||
62 | "name": "python2" | ||
63 | }, | ||
64 | "language_info": { | ||
65 | "codemirror_mode": { | ||
66 | "name": "ipython", | ||
67 | "version": 2 | ||
68 | }, | ||
69 | "file_extension": ".py", | ||
70 | "mimetype": "text/x-python", | ||
71 | "name": "python", | ||
72 | "nbconvert_exporter": "python", | ||
73 | "pygments_lexer": "ipython2", | ||
74 | "version": "2.7.6" | ||
75 | } | ||
76 | }, | ||
77 | "nbformat": 4, | ||
78 | "nbformat_minor": 2 | ||
79 | } | ||
80 | 1 | { |