RepTB_NBI_Algorithm_Snippet.ipynb 1.95 KB
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import csv\n",
    "import numpy.matlib\n",
    "from operator import itemgetter, attrgetter\n",
    "from sklearn.model_selection import KFold\n",
    "from sklearn.metrics import roc_curve, auc\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "#NBI calculation for A (adjacent matrix)\n",
    "\n",
    "K = np.diag((1/sum(A))) # Create a diagonal matrix \n",
    "n = A.shape[0]           # Number of rows of adjacent martix A\n",
    "m = A.shape[1]           # Number of columns in adjacent matrix A\n",
    "#print n, m, Ky.shape\n",
    "K[np.isinf(K) | np.isnan(K)] = 0\n",
    "kk = np.transpose(np.sum(A,1))\n",
    "#print kx.shape\n",
    "N = np.matlib.repmat(1/kk,n,1)\n",
    "N[np.isinf(N) | np.isnan(N)] = 0\n",
    "#kx[np.isinf(kx) | np.isnan(kx)] = 0\n",
    "W = np.transpose(np.dot(A, K))    # Create the weight matrix  \n",
    "W1 = np.dot(A, W)\n",
    "W2 = np.multiply(N, W1)   # Create the scaled up weight matrix\n",
    "print W2.shape\n",
    "NBIscore = np.dot(W2, A)      # Create the Final Resource matrix in accordance with (R = W.A)\n",
    "print NBIscore.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}