{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import csv\n", "import numpy.matlib\n", "from operator import itemgetter, attrgetter\n", "from sklearn.model_selection import KFold\n", "from sklearn.metrics import roc_curve, auc\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6319 3772 (3772, 6319) 26093.0 (6319, 3772)\n" ] } ], "source": [ "#fp = open('dt_new_and_fda_unique.csv','r')\n", "fp = open('new_dt_from_go_and_db_unique_latest.csv','r')\n", "drugid = []\n", "targetid = []\n", "\n", "##1. Reading edge list line by line##\n", "for line in fp:\n", " line = line.strip()\n", " tmp = line.split(',')\n", " drugid.append(tmp[0])\n", " targetid.append(tmp[1])\n", "fp.close()\n", "##End 1##\n", "\n", "drug = np.array(drugid)\n", "target =np.array(targetid)\n", "\n", "uni_drugid = np.unique(np.array(drugid))\n", "uni_targetid = np.unique(np.array(targetid))\n", "\n", "##creating zero incidence matrix for the graph##\n", "\n", "A = np.zeros((uni_targetid.shape[0], uni_drugid.shape[0]))\n", "\n", "for i in range(len(drugid)):\n", " idx1 = np.where(uni_targetid==targetid[i])\n", " idx2 = np.where(uni_drugid==drugid[i])\n", " A[idx1,idx2] = 1\n", "\n", "nd = uni_drugid.shape[0]\n", "mt = uni_targetid.shape[0]\n", "\n", "A_T = np.transpose(A)\n", "no_edges = np.sum(A)\n", "print nd, mt, A.shape, np.sum(A), A_T.shape\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(3772, 3772)\n", "(3772, 6319)\n" ] } ], "source": [ "#NBI calculation for A\n", "\n", "Ky = np.diag((1/sum(A))) \n", "n = A.shape[0]\n", "m = A.shape[1]\n", "#print n, m, Ky.shape\n", "Ky[np.isinf(Ky) | np.isnan(Ky)] = 0\n", "kx = np.transpose(np.sum(A,1))\n", "#print kx.shape\n", "Nx = np.matlib.repmat(1/kx,n,1)\n", "Nx[np.isinf(Nx) | np.isnan(Nx)] = 0\n", "#kx[np.isinf(kx) | np.isnan(kx)] = 0\n", "W = np.transpose(np.dot(A, Ky))\n", "W1 = np.dot(A, W)\n", "W2 = np.multiply(Nx, W1)\n", "print W2.shape\n", "NBIscore = np.dot(W2, A)\n", "print NBIscore.shape" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#NBI calculation for A_T\n", "\n", "Ky = np.diag((1/sum(A_T)))\n", "n = A_T.shape[0]\n", "m = A_T.shape[1]\n", "#print n, m, Ky.shape\n", "Ky[np.isinf(Ky) | np.isnan(Ky)] = 0\n", "kx = np.transpose(np.sum(A_T,1))\n", "#print kx.shape\n", "Nx = np.matlib.repmat(1/kx,n,1)\n", "Nx[np.isinf(Nx) | np.isnan(Nx)] = 0\n", "#kx[np.isinf(kx) | np.isnan(kx)] = 0\n", "W = np.transpose(np.dot(A_T, Ky))\n", "W1 = np.dot(A_T, W)\n", "W2 = np.multiply(Nx, W1)\n", "NBIscore_T = np.dot(W2, A_T)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "##Normalizing NBI scores\n", "NBIscore = np.true_divide(NBIscore, np.max(NBIscore, axis=0))\n", "NBIscore_T = np.true_divide(NBIscore_T, np.max(NBIscore_T, axis=0))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nbi_idx = np.argsort(NBIscore, axis=0)\n", "nbi_idx_T= np.argsort(NBIscore_T, axis=0)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "wp = open('predicted_targets_for_all_drugs_using_percent_diff_0.20_.csv','w')\n", "for d in range(nd):\n", " idx1 = nbi_idx[:,d]\n", " #idx1 = idx1[::-1]\n", " idx2 = A[:,d]\n", " idx3 = idx2[idx1]\n", " idx4 = np.where(idx3 == 0)[0]\n", " p_targets_idx = idx1[idx4[-n:]]\n", " p_targets_idx = p_targets_idx[::-1]\n", " p_targets = NBIscore[p_targets_idx,d]\n", " if p_targets[0] == 0.0:\n", " continue\n", " else:\n", " p_diff = np.diff(p_targets)\n", " th = p_targets[0]*0.20\n", " th_f = p_targets[0]-th\n", " f_idx = p_targets_idx[p_targets > th_f]\n", " f_scores = p_targets[p_targets > th_f]\n", " f_targets = uni_targetid[f_idx]\n", " #print p_targets[0], th, th_f, p_targets[p_targets > th_f], p_targets\n", " for i,t in enumerate(f_targets):\n", " wp.write(uni_drugid[d] + ',' + t + ',' + str(f_scores[i]) + '\\n')\n", "\n", "wp.close()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }